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1. Introduction

Let H be an abstract group and let C be a variety of finite groups (i.e., a class of finite
groups closed under taking subgroups, quotients and finite direct products); for example
the variety of all finite p-groups, for a fixed prime p. Consider the smallest topology on
H such that all the homomorphism H — C' from H to any group C € C (endowed with
the discrete topology) is continuous. We refer to this topology as the pro-C topology of H.
This paper is concerned with the following property on H: whenever H; and Hs are finitely
generated subgroups of H such that H; and Hs are closed in the pro-C topology of H, then
the subset H1Hy of H is closed. If H has this property, we call H “2-product subgroup
separable” (relative to the class C; there is an analogous concept of “n-product subgroup
separable”). The original motivation for the study of this property goes back to a problem
posed by J. Rhodes on the existence of an algorithm to compute the so called kernel of a
finite monoid (see [5], [6]). For example, if C is in addition closed under extensions, then
groups that are extensions of free groups by groups in C are n-product subgroup separable,
for any natural number n (see [8], [9]; see also [12] for other examples).

In this paper we show that if the variety C is closed under extensions, then the property
of being 2-product subgroup separable is preserved by taking free products of groups (see
Theorem 3.13). This extends in one direction an analogous result of T. Coulbois [1].

The methods used to prove this result are based in the theories of groups acting on
trees and of profinite groups acting on profinite trees.

2. Preliminaries

In this paper C always denotes an extension closed variety of finite groups, i.e., a
nonempty collection of finite groups such that

(a) C is subgroup closed: whenever G € C and H < G, then H € C;
(b) C is closed under taking quotients: whenever G € C and K <G, then G/K € C;

(c) C is extension closed: whenever 1 — K — G — H — 1 is an exact sequence of
finite groups and H, K € C, then G € C.

For example, C could be the class of all finite groups, or the class of all finite p-groups
(for a fixed prime number p), or the class of all finite solvable groups.

All groups considered in this paper are assumed to be residually C (recall that a group
R is residually C if for any 1 # x € R, there exists a normal subgroup N of finite index in R
such that x ¢ N and G/N € C). It is well-known that an abstract free group is residually
C (see, for example, [7], Proposition 3.3.15), and that a free product of residually C groups
is residually C (see [4]).



A pro-C group A is an inverse limit

a
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of groups in C; we think of G as a topological group with the topology determined by
assigning to each finite group A; the discrete topology. Equivalently, A is a pro-C group if
it is a compact, Hausdorff and totally disconnected topological group such that A/U € C
for every open normal subgroup U of A. (See [7], Section 9, for general facts about pro-C

groups.)

Let {A1,...,A,} be a finite collection of pro-C groups. A free pro-C product of these
groups consists of a pro-C group, denoted A = [[_; A;, and continuous homomorphisms

pit A4 — A (i=1,...,n),

satisfying the following universal property:

A.
©i
A
i, B

for any pro-C group B and any set of continuous homomorphisms ¢; : A, — B (i =
1,...,m), there exists a unique continuous homomorphism v : A — B such that 1; = ¥y,
for all + = 1,...,n. Observe that one needs to test the above universal property only for
groups B € C, for then it holds automatically for any pro-C group B, since such a B is an
inverse limit of groups in C. Denote by

L=A %% A,

the free product of Ay, ..., A, as abstract groups. Then A = [[_, A4; is the completion of
L

lim L/N,

Jm

NenN
where N = {N | NN A4, isopenin A; (i = 1,...,n)}. One checks that L is naturally
embedded in A (see, for example, [7], Proposition 9.1.8).

Recall that a topological space X is a profinite space if it is the inverse limit of finite
discrete spaces; in other words, X is profinite if it is compact, Hausdorff and totally
disconnected.

A profinite graph T' (oriented) is a profinite space with a distinguish closed subset
V(L) (the vertices of the graph) and a pair of continuous maps do,d; : I' — V(') (the
incidence maps) such that d;(v) = v for all v € V(I') (i = 0,1). The elements of the
subspace E(I') = T' — V(I') are the edges of the graph. In this paper, the space E(I")
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is assumed to be always closed, and so it is enough to define dy and d; continuously on
E(T"). Let Z; denote the free pro-C group of rank 1, and for a profinite space X, let [Z;X]
denote the free Z;-module on the basis X (or, equivalently, the free abelian pro-C group
on the basis X). Such a profinite graph is called a pro-C tree if the following sequence

0 — [Z,EM)] - [Z:V(D)] = Zs — 0

of free pro-C abelian groups is exact, where e(v) = 1 for every v € V(I'), d(e) = dy(e)—dp(e)
for every e € E(I'). (See [3] for a general definition of pro-C tree and its properties.) Finite
abstract graphs are profinite graphs; and finite abstract trees are pro-C trees for any C.

Let T’ be a profinite pro-C tree and let z,y € T'. The geodesic [z,y] determined by
x and y is the smallest profinite subtree of I' containing x and y, or equivalently, the
intersection of all profinite subtrees of I' containing x and y.

If I" and I are profinite graphs, a morphism « :T' — T is simply a continuous map
such that a(d;(z)) = d;(a(x)), forall z € T (i = 0,1). A morphism is an embedding if it
is an injection.

Let A be a profinite group. We say that A acts on a profinite graph I' from the left if
there exists a continuous function A x I' — T, denoted (a,z) — az (a € A,z € T'), such
that (aa’)x = a(d’x), lx = = and d;(ax) = ad;(z), for all a,a’ € G,z € T (i =0,1). There
is a similar concept of right action of A on I'. If a profinite group A acts from the left on
a profinite graph I', we denote the corresponding quotient graph of orbits by A\I'. If A
acts on I' from the right, we denote the quotient graph by I'/A. Let A act on I" from the
left and let

p:I'— A\

be the corresponding quotient map. If A\T is finite, there is a maximal subtree T" of A\T;
hence there exists a connected p-transversal (also called simply a transversal) J containing
a lifting T of T”, i.e., T is a subtree of I" that is mapped isomorphically to T’ by ¢, J is a
subset (not necessarily a subgraph) of I containing 7" such that ¢ induces a bijection from
J to A\I', do(J) C J and V(I')NJ =V (T).

Let A =], A; be a free pro-C product. Then the standard pro-C tree S(A) associ-
ated with this free product is defined as follows (cf. [3]): its space of edges is the disjoint
union "

E(S(A)) = Ui:l A

of n copies of A; its space of vertices is the disjoint union

V(S() =) A/As

of the quotient spaces A/A;, where Ag = 1; and its incidence maps dy and d; are given by

n

do(a) = aAp = a, di(a) = aA;, when a is in the ith copy of A in EF(S(A)) = |- A.

1=1

Note that A acts naturally on S(A) by left multiplication; the stabilizers of vertices
are conjugates of the groups A; (i = 1,...,n), and all edge stabilizers are trivial. The
quotient graph A\S(A) is a finite tree T,, with n edges and n + 1 vertices:
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Using this finite graph T,,, one can give an alternative description of S(A): we identify
T,, with a canonical transversal of it in S(A) whose vertices are v; = 14; (i =0,1,...,n);
then S(A) is the unique profinite graph obtained as the union of all translations of T,, by
the elements of the group A, with the proviso that the A-stabilizer of the vertex av; is
aA;a”! (a € A,i=0,1,...,n) and the A-stabilizer of the edge ae; is trivial (i = 1,...,n);
furthermore, the topology of S(A) is induced by the product topologies of A x V(T,,) and
A x E(T,).

Remark that if B; is a closed subgroup of A; (i = 1,...,n) and if B = [[_, B; is
the free pro-C product of the pro-C groups By, ..., By, then B is the closed subgroup of A
generated by By,..., B, (cf. [3], Corollary 9.1.7); hence there is a natural embedding of
the corresponding pro-C graphs S(B) — S(A).

There is a similar construction of an abstract tree S(G) associated with a free product
G = Gy *--- x G, of abstract groups Gy,...,G, (cf. [10], Section 4.5). Its space of edges
is the disjoint union E(S(G)) = |J;_, G of n copies of G; its space of vertices is the
disjoit union V(S(GQ)) = |J 1 ,G/G;, of the quotient spaces G/G;, where Gy = 1; and
its incidence maps dy and dy are given by do(g9) = gGo = g and di(g) = aG;, when g €
E(S(G)) is in the ith copy of G in E(S(G)) =) ._, G.

The group G acts naturally on S(G) by left multiplication, and the corresponding
quotient graph is the above finite tree T,, with n edges and n + 1 vertices.

Let R be an abstract group. Denote by N¢ the collection of all normal subgroups N of
R such that R/N € C. Then there is a unique topology on R making it into a topological
group such that N¢ is a fundamental system of neighborhoods of the identity element 1 of
R. This is the (full) pro-C topology of R . We say that R is n-product subgroup separable
(with respect to its pro-C topology) if whenever Hy, ..., H, are closed subgroups of R (in
the pro-C topology of R) which are finitely generated as abstract groups, then the product
subset Hy --- H, is closed in the pro-C topology of R.
If R is an abstract group, we denote by R its completion with respect to its pro-C
topology, i.e.,
Rs = lim R/N.

NeN¢

Then, there exists a natural embedding
t:R— Rg,
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since R is assumed to be residually C.
The following fact is not hard to prove: ‘pro-C completion commutes with free prod-

ucts’, in other words, if
G=Gy1*---xG,

is a free product of abstract groups Gy,...,G,, then
Gs=(Gr)---1I(Gy)s (free pro—C product).

Furthermore, since the groups G; (i = 1,...,n) are assumed to be residually C, so is their
free product GG, and we have canonical embeddings

1

G(—>- Gé

Moreover, each G; is closed in the pro-C topology of G (cf. [7], Corollary 3.1.6).

These facts allow us to think of the tree S(G), associated with the abstract free
product G' = Gy *-- - x G,,, as a subgraph of the pro-C tree S(G), associated with the free
pro-C product Gs = (G1)s LI --- I (Gy,)s. More precisely, there is a natural embedding of
graphs

S(G) — S(Gg)

defined as follows.

For vertices: ¢G;+— g(Gi)s (9€G,i=1,...,n)
For edges: g in the i-th copy of G in E(S(G)) is sent to
g in the i-th copy of G in E(S(Gy)).

Notation: if H is a subgroup of a group G and z,y € G, then as usual, y* = z~lyz and
H? = g7 'Hz. If X is a subset of a group G, then X denotes the closure of X in the
pro-C completion G5 of G observe that the closure CI(X) of X in the pro-C topology of
G coincides with G N X.

3. The Main Theorem
We begin with a reduction result.

Lemma 3.1 Let R be an abstract group, endowed with its pro-C topology, and let U be an
open subgroup of R. Then R is n-product subgroup separable if and only if U is n-product
subgroup separable.

Proof: First observe that since C is extension closed, the pro-C topology of U is precisely
the topology induced by the pro-C topology of R (see Lemma 3.1.4(a) in [7]). Assume R
is n-product subgroup separable. Then plainly U is n-product subgroup separable.
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Conversely assume that U is n-product subgroup separable. By the above, the core
Ugr of U in R is n-product subgroup separable as well. Hence, replacing U by Ug, if
necessary, we may assume that U is open and normal in R. Let Hq,..., H, be finitely
generated closed subgroups of R. We shall prove by induction on the number of H; which
are not contained in U that Hy--- H, is closed in the pro-C topology of R. If H;, < U
for all ¢ = 1,...,n, the result is clear. Since each H; is finitely generated and U N H; has
finite index in H;, we have that U N H; is also finitely generated. Pick H; £ U. Write
Hy =1{J; hj(UNHy), (hj € Hy). Therefore we get a finite union

Hy - Hy =) hyHY - Y (U N H) Hygs - Hy,

By the induction hypothesis, thj ---H;le(U N H;)H; 1 ---H, is closed in R. Thus
H,---H, is closed in R. O

Lemma 3.2 Let G be an abstract group that acts freely on a tree T'. Endow G with its
pro-C topology. Let K be a closed subgroup of G and let A be a finite subgraph of K\T.
Then there exists an open subgroup V of G containing K such that the natural map of
graphs

v : K\T — V\T

is injective on A.

Proof: Since K is closed, K = ();c; Ui, where {U; | i € I'} is the collection of all open
subgroups of G containing K. Consider the map of graphs 7¢ : K\T — G\T. Since A is
finite, it is a finite union of intersections as follows:

m
U AmTG .’,Ut

for some z; € G\T and m € N. We claim that for each t = 1,...,m, there exists some
ir € I such that 7y, is injective on AN Tél(xt). Since GG acts freely on T, the set Tal(mt)
may be identified with K'\G; moreover, if K < U < G, the restriction of 7y : K\T — U\T
to 75 ' (;) may be identified with the canonical surjection 77 : K\G — U\G. Since
AN 75" (w;) can be thought of as a finite subset of K\G, the existence of the required i
follows from K = (,.; U;. Define V to be V' = N, U;,. Then clearly 7y is injective on
A. O

Let v be a vertex of an abstract graph I'. Then Starp(v) is the set of edges e of I' such
that v = dg(e) or v = dy(e). A morphism of graphs ¢ : ' — I" is called an immersion if,
for each vertex v € I', the map Starp(v) — Starp/ (¢(v)), induced by ¢, is an injection.

Lemma 3.3 Let ¢ : ' — A be an immersion of finite connected graphs. If ¢ induces an
epimorphism 71 (I') — 71 ((I")), then ¢ is an injection.

Proof: An immersion of graphs induces a monomorphism of fundamental groups (cf.
Proposition 5.3 in [11]); hence, m1(I') — m1((I")) is an isomorphism. Define m to be the
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rank of the free group 71(I'). Then we also have rank(m(¢(I')) = m. By Corollary 1.8 in
[2] we have that

> (IStarp(v)] —2) =2m—-2= > (|Starym(w)| —2).

veV (D) weV (p(I'))
Since |Starr(v)| > |Star,my (¢(v))| for all v € V(T'), we deduce that
Stare(v)] = |Starum)(p@), Yo e V(T), and [V(T)| = V(o))
L.e, ¢ is an injection. u]

Lemma 3.4 Let an abstract group G act on an abstract tree S. Let K be a closed
subgroup (in the pro-C topology) of G. Let D be a K-invariant subtree of S such that
K\D is finite. Endow G with its pro-C topology; then for every open subgroup U of G
containing K, there exists an open subgroup V of G with K <V < U < G such that the
morphism

v : K\D — V\S

induces an epimorphism of fundamental groups
fv :m (K\D) — m (7v(K\D)).

Proof: Let K denote the subgroup of K generated by all the stabilizers of the vertices of
D (under the action of K) and let U denote the subgroup of U generated by all stabilizers
of the vertices of S (under the action of U); observe that K <« K and U «U. Then
K/K = m(K\D) and U/U = 7, (U\S) (cf. [10], page 55, Corollary 1). Moreover U\S is a
tree (see [10], page 55, Exercise 2); since U/ U acts freely on this tree, it follows that U / U
is a free group. Consider the image Dy of D in U \S. Clearly K U / U acts freely on Dy
and hence, 71 ((KU/U)\Dy) = KU /U (use again [10], page 55, Corollary 1). Therefore,
since K < U, the homomorphism

frg s m(K\D) — mi (73 (K\D)) = mi (KU /U)\Dy)
coincides with the natural epimorphism K/ K — KU/U.
Since U/U is free and acts freely on U\ S, by Lemma 3.2 there exists an open subgroup
V of U containing KU such that the restriction
¢ (KU/U)\Dy — (V/U)\(U\S(G))
of the natural morphism

(KU/O)\U\S) — (V/U)\(U\S)

to (KU/U)\Dy is an injection.



Clearly (V/U)\(U\S(G)) = V\S(G) and (KU/U)\Dy = KU\D. Hence from the

commutativity of the diagram

K\D v V\S

N A

KU\D
one deduces that ¢((KU/U)\Dy) = 7 (K\D). In other words
(KU/U)\Dy — 7v(K\D)
is an isomorphism. So it induces an isomorphism of fundamental groups
n:m (KU/U)\Dy — m (v (K\D)).
Thus fv = nf 7 is an epimorfism as asserted. u]

Lemma 3.5 Let G1,...,G,, be groups and let H be a finitely generated closed subgroup
of the free product G = Gy *- - - *x G,,, (endowed with its pro-C topology). Let S(G) be the
standard tree of the free product G = Gy * - -+ x G,,, and let D be an H-invariant subtree
of S(G) such that H\D is finite. Then for any connected transversal ¥y of H\D in D,
there exists an open subgroup U of G and a connected transversal ¥y of U\S(G) in S(G)
such that

(a) H\D is canonically embedded in U\S(G) and ¥y C Xy;
(b)
U= [*wGV(EU)Uw] * Fy,

where Fy is the free group m (U\S(G)) and where U,, denotes the stabilizer in U of
the vertex w;

()
H = [*wGV(ZH)Hw] *FH7

where Fpy is the free group m (H\D) and where H,, is the stabilizer in H of the vertex
w;
(d) Fpy is a free factor of Fy.

Proof: Consider the canonical morphism of graphs

v : H\D — H\S(G) — U\S(G).
Observe first that, by Lemma 3.4, for every open subgroup U containing H there exists an
open subgroup V < U containing H such that the morphism 7y induces an epimorphism

of fundamental groups fy : m (H\D) — 71 (7y (H\D).
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Hence, by Lemma 3.3, to show that the morphism above is injective it suffices to show
the existence of an open subgroup U containing H such that 7 is an immersion. Choose
w € V(H\D), where w = Hw and w € D C S(G). Since H\D is finite, it suffices to
prove the existence of U such that (1), Star p(w) 1S Injective. Now we use the structure
of G\S(G). If w = v, then the result follows from the fact that |Star g\ p(0)| = |Starp(v)|
and |Stary s(q) (V)| = [Starg e (v)|, for every open subgroup U.

Assume next that w # vH. Then Starg p(w) is a finite subset of Star s(q)(w) =
(H N Gy)\Gy. Since H is closed, we have that H = [V, where V ranges over all the
open subgroups of G containing H. Hence H NG, = ((V N Gy,); so there exists an open
subgroup U of G containing H such that all elements of Starp\ p(.) are distinct modulo
U NGy as needed. This proves that 77 is injective.

Thus we may regard H\D as a subgraph of U\S(G). Choose a maximal subtree Ty
of H\D and extend it to a maximal subtree Ty of U\S(G). Let

j:tH\D — Sp

be a bijection onto a connected transversal Xy of H\D in D containing a lifting of T.
Extend j to a bijection, which we denote also by 7,

j:U\S(G) — Sy

onto a connected transversal Xy of U\S(G) in S(G) containing a lifting of Ty .
For every edge e € U\S(G) — Ty, choose an element g. € G such that

gej(di(e)) = di(j(e)).

Then (see, for example, [10], Section 1.5.5, Theorem 14)

U =X,y Uu* Fu,

where Fy is a free group on the set By = {g. | e € U\S(G) — Ty} and where U,, is the
stabilizer in U of the vertex w.
We also have that
H = [*wEV(EH)Hw] * Py,

where Fp is a free group on the set By = {g. | e € H\D — Ty} and where H,, is the
stabilizer in H of the vertex w.
Part (d) is clear since H\D is a subgraph of U\S(G). o

Corollary 3.6 Let G4, ..., G,, be groups and let H be a finitely generated closed subgroup
of the free product G = Gy % --- x« G,;,. Then there exists an open subgroup U of G and
(Kurosh-type) decompositions

U=U;*%---xU; and H=H;*---xH;
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such that
(a) Hz <c Uz (Z = 17"-7t);

(b) For each i = 1,...,t — 1, U; is an open subgroup of a conjugate of some G; (j =
1,...,m), ie., Uy =UNTG;7 for some 7 € G;

(c) Uy is a free group of finite rank and H; is a free factor of Uy.

Moreover, the decomposition for U (respectively for H) can be chosen to contain as
factors all the intersections U N G; (respectively, H N G;) (1 <i < m).

Proof: Consider the standard tree S(G) of the free product G = G; * - - - * G,,. Define a
subtree of S(G)

m

D= ( U H[vo,rjv]) U ( U H[UO7U7J])7

jeJ i=1

where {r; | j € J} is a finite set of generators for H. Choose a connected transversal X of
H\D in D containing all the v;. Now apply the preceding lemma and observe that if v € ¥
and v = Tvj, then U, = UN7G;77 ! and H, = H N7G,;7'; in particular, U,, = U N G,
and H,, = HNG;. u]

Corollary 3.7 Let G4, ...,G,, be groups and let G = G1 * - - - * GG, be their free product.
Assume that H is a finitely generated and closed subgroup of G (in its pro-C topology).
Then there exists a Kurosh decomposition

H = [*j:l[*TGH\G/GiHmTGiT_lﬂ * F

of H, where F is a free group, such that

where if X is a subset of H, then X denotes the topological closure of X in G ;. Moreover,
F = Fj; is a free pro-C group.

Proof: Choose U open in GG and Kurosh decompositions

U=U;*%---xU; and H=H;*---%xH;

satisfying the conditions of Corollary 3.6. Using the fact that U is open in G and the form
of the decomposition, one can show that

U=0,1---17,

where U = Uz and U; = (Uy) is a free pro - C group (cf. [7], Corollary 9.1.7 and Theorem

9.1.9). Next observe that H coincides with the closed subgroup ofﬁU generated by the
groups H; (i = 1,...,t). Note that the latter group is Hy I --- II H; (cf. [7], Corollary
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9.1.7). Finally, since H, is a free factor of U, we have that the topology on H; induced from
the pro-C topology of U; coincides with the full pro-C topology of H; (cf. [7], Corollary
3.1.6); therefore F' = F}. o

Lemma 3.8 Let G4, ..., G, be groups and let H be a closed subgroup of the free product
G = Gy % -+ x Gy, (endowed with its pro-C topology). Let S(G) be the standard tree of
the free product G = Gy *--- % Gy, and let D be an H-invariant subtree of S(G) such that
H\D is finite. Then

H\D = H\D,

where H denotes the closure of H in G, and D is the closure of D in S(G).

Proof: Consider the natural continuous map

D¢ D H\D
Since its image is dense and H\D is finite, it induces an onto map
Now, by Lemma 3.2, there exists an open subgroup U of G containing H such that
7: H\D — H\S(G) — U\S(G)
is injective. Since U is open, one clearly has U\S(G) = U\S(G;) (in this case the space
edges of these quotient graphs is the set of right cosets U \G = U\G, and the set of vertices
is the set of open double cosets U\G/G; = U\Gs/(G;)s ). From the commutativity of the

diagram
K\D“—— H\S(G) ——=U\S(G) ——= U\S(G;)

N,

one deduces that H\D — H\D is injective. o

Lemma 3.9 Let A = BIIC be the free pro-C product of pro-C groups B and C. Assume
that Bl Sc B, Cl Sc Cand A=BIC = <Bl,01>. Then B = Bl and C = 01.

Proof: Let ¢ : A — B be the epimorphism induced by the identity homomorphism
B — B and the homomorphism that sends C' to 1. Since A is generated by B; and C}
and since ¢(C1) = 1, it follows that B = ¢(B;) = By. Similarly C = (4. O
Lemma 3.10 Let G4, ...,G,, be residually C groups and let

G=Gi*-*Gp
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Endow G with the pro-C topology. Let H be a subgroup of G which is either open or
finitely generated and closed. Let

be the abstract free product of the pro-C completions of the groups G;. Denote by D
the minimal H-invariant subtree of S(G) containing vy if H is finitely generated, and let
D = S(G) if H open. Let X be a connected transversal of H\D in D. Then

H = [*veV(zH)Hv} *m (H\D) = [*21[*TEH\G/GiHmTGiT71jH * I

and

HNL = [*veV(EH)(HU)} x F'= [*Zl[*TeH\G/GiHmTGiT_IH x F

where F' = w1 (H\D).
Furthermore, for 7 € H\G/G; as above, (i =1,...,m),

HnrGr t=HnrGm L

Proof: Note that Gs = (G1)¢ 1+ -11(Gy,)s. By Lemma 3.8 H\D = H\D. Let D' be the
intersection of D with the abstract connected component of S(G) containing S(G) (this
connected component coincides with S(L)). Then

(HNL)\D' = H\D = H\D;
indeed, the natural map of graphs
D' — H\D

is clearly an epimorphism, and if d; = hdy for some h € H, dy,d> € D', then h € HN L
(just notice that d; and dy are either both in L or both of the form gv;, where g € L,
i=1,...,n),ie.,
(HNL)\D' — H\D
is bijective.
Let Xy be a connected transversal of H\D in S(G). Put F = 7 (H\D) = 7 ((H N
L)\D’). Then (cf. [10], page 43, Example 1)

H = [Koes, H] +m(H\D) = K K cneja 0 1G]]« F

and
AnL=[XK,ex,(@NL),] *m((HNL\D)

= [*izl[*TEH\G/GiFIﬂTGiT_l]] * I (2)
It remains to prove that for 7 € H\G/G; as above and i = 1,...,m,
HnrGir ' =Hn7Gr L.
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Suppose first that H is open. Then H = H ¢ and so,

H:[]_[ ]_[ (HeriT—l)é}HFé:[]_[ ]_[ HNrGr I F
i=17eH\G/G; i=17cH\G/G;

(see Exercise 9.1.1(a) and Corollary 3.1.6 in [7]). Note that since H is open H\G/G; =
H\G;/Gj; it follows that (see Theorem 9.1.9 in [7] and its proof together with the equation
(2) above)

F[:ﬁ H (HﬂT@iT_l)HFé.

i=1reH\G/G,

Then, comparing these two decompositions of H and using Lemma 3.9 we get that H N
TGt = W

Suppose now that H is closed and finitely generated. Then H N7G;7 ! is also closed.

Let V be the set of all open subgroups of G containing H. Then H = (), V because
H is closed. Hence

HnrGr'= () (VnrGir™).
Vey

Since every open subgroup of G; containing H is of the form V for some V € V, we have

that H = ﬂVeV V.
We claim that

ﬂ VNnrGyr—'=HN7tG;7 L.
vey

To see this it suffices to show that for any open subgroup W of 7G;7~! containing
H N 7G;771, there exists some V € V such that V N 7G;7~! < W (indeed, since any
open subgroup of 7G; 7! containing H N 7G;7—! is of the form W, this would mean that
every open subgroup of 7G;7~! containing H N 7G;7~! contains also some V N 7G;7~1).
Choose U € V satisfying the statement of Corollary 3.6 with respect to H:

U=UN7G;7 ' x---

H=HnN7Gr t*---.

Consider the natural epimorphism of U onto U N 7G;7~!. Let V be the preimage of

W NUNTG;7~t. Then V is open and contains H, i.e., V € V; moreover V N7G;7—! =
WnUNTGrt=wnU<W.
Now,

HnrGr ' = ﬂ (VnrGir ) = ﬂ VNnrG,r—t=HnN7tGim 1,
Vey Vey

as desired. O

Lemma 3.11 Let G1,...,G,, be groups and let H be a finitely generated closed subgroup
of the free product G = G1%- - -*G,,, (endowed with the pro-C topology). Fixi € {1,...,m}
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and assume that the group G; is 2-subgroup separable. Then HK and KH are closed
subsets of G for any closed subgroup K of Gj;.

Proof: We prove that HK is closed; for K H the proof is similar. We must show that
GNHK =HK.

Let S(G) be the standard tree of the free product G = G * --- x G, and let D
be a minimal H-invariant subtree of S(G) containing vg. Then H\D is finite. Choose a
connected transversal ¥y of H\D in D. Then by Lemma 3.5 there exists an open subgroup
U of G containing H and a connected transversal Xy of U\S(G) in S(G) with ¥y C Xy
such that

U = [Kuevem U] « Fo = K [Kene/o,UnrGir ] « Fy, (3)
where Fy is the free group 71 (U\S(G)), and

H =Xy Hal « Fir = X Koo e, HNrGir ]  Fa,

where Fy is the free group 71 (H\D); moreover Fp is a free factor of Fy.

Since HK is closed if and only if H(U N K) is closed (see the proof of Lemma 3.1)
we may assume that K <U. Pick h € H and k € K with hk = g € G. Note that g € U,
because H, K < U and U = GNU, since U is open (cf. Proposition 3.2.2 in [7]). Let

L= (Gi)g**(Gm)s

be the abstract free product of the completions of the groups G;. Since k € G, one has
he HNL <UnN L. By the preceding lemma

HNL= [*UEV(EH)(HU)} *FH = |:>|<Z-:1[*TGH\G/GiHﬂTGZ‘T_l}} *FH

and

UNL= [*UGV(EU)<UU)] >I<F’U - [*:1[*TGU\G/G2.UHTG@'T_1H *FU. (4)

Write b = Ay, - - hm, as the reduced word of this free product decomposition of H N L.
Note that this is also a reduced word for the free product decomposition of U N L above.
Observe that any reduced word in the free product decomposition of U above, is also
reduced in the free product decomposition of U N L.

We consider two cases. First assume that h,,, € U N G;. Then, since k € U N G;, we
have that ¢ = hk = hy,, -+ - hy, k is reduced as a word in the free product decomposition
of U N L given above. On the other hand, g = hk can be written as a product according
to the free product decomposition of (3) of U; since such a product is also a product
according to the free product decomposition (4) and it is unique, we deduce that the
elements Ay, , -, hm,,k are in U, and thus in G. Therefore h,k € G. Finally, since H
and K are closed, we deduce that GNH = H and GNK = K; so, h € H and k € K, in
particular, hk € HK. Thus, GNHK = HK.
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Assume next that h,,, € UNG;. If h,,, = k=1, then hk € GN H = H, and we are
done. Otherwise, h,,, # k=, and so

h'ml e hm171 (hmlk)

is a reduced expression for ¢ = hk in the free product (4). Again, since g € U, this
coincides with the unique expression for g in the free product (3). Hence,

hmlf“’hmsz(hmlk) cU <.

Therefore, hpy,,,++ hm,_, € GNH = H and h,,,k € GNUNG; = UNG;. Now, since
U NG, is 2-separable (see Lemma 3.1), there are ' € H N G;, k' € K with W'k = h, k.
Hence

g=hk="hy, - hpm_ (WE)=(hpm, - hm,_ W)k € HK,

as desired. O

Corollary 3.12 Let G = G; * --- x GG,,, be a free product of groups G; and assume
G is endowed with the pro-C topology. Let K be a closed subgroup of G and let K;
be a closed subgroup of G; (i = 1,...,m) such that K = K % --- % Kp,,. Let S(Gp),
S(K), S(K) and S(G) be the profinite graphs associated with the free pro-C products
Ge = (Gr)gI--- I (G)gs, K=K/ --1IK,,, K=K %---%K,, and G=Gq*---%xG,,,
respectively. Then S(K'), S(K) and S(G) are naturally embedded in S(G;) and

S(K)NS(G) = S(K).

Proof: The embeddings are easy to check (in the case of S(K) it follows from the as-
sumption that K and K; are closed in G and G, respectively, i = 1,...,m). We need to
check that if z € S(K)NS(G), then x € S(K). Recall that the graph S(G) consists of the
G-translates of the finite graph T;,, (see Section 2) with the proviso that in S(G) the sta-
bilizer of zv; is G2~ where Gy = 1 and the edge stabilizers are trivial (and analogously
for S(K), S(Gg), S(K)). If z is an edge or a translate of v, then clearly z € S(K) because
the stabilizer of z is trivial (e.g., if x has the form ge; = kei, with g € G, k € K, then
g=kec GnNK = K). Assume next that z is a translate of v;, where i > 0. Then z has
the form gv; = kv;; and this implies that k~1g € (Gi)g (9 € G,k e K), ie., g = kg;, with
gi € (Gi)s. By Lemma 3.11, we have that g = kg;, with & € K and g; € G;. Therefore
gv; = kv; € S(K), as needed. O

Theorem 3.13 Let G1,...,G,, be groups. Assume that in each G; the product of any
two finitely generated closed subgroups in the pro-C topology is a closed subset (i.e., each
G, is 2-product subgroup separable). Then their free product

G=Gi**Gp
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is 2-product subgroup separable in the pro-C topology of G.

Proof: Let H and K be finitely generated subgroups of G which are closed in the pro-C
topology of G. We must show that the set HK is closed in the pro-C topology of G. By
Lemma 3.1 and Corollary 3.6 we may assume that K has the form

K=K x---xK,,

where K; is a closed subgroup of G; (i =1,...,m).
Let H and K denote the closures of H and K, respectively, in the pro-C completion
G of G. Note that HK = HK. To show that HK is closed is equivalent to showing that

HK = (HK)NG.

Obviously HK C (HK) N G. To prove the opposite containment, let heHand k € K
and assume that

We have to show that
ge HK.

Consider the standard trees S(G) and S(K) associated with the abstract free product
decompositions
G=G1*---xG, and K=K;*x---xK,,,

respectively. Observe that K = K; II ---II K,,,, where K; is the closu{e of K; in G (cf.
[7], Corollary 9.1.7). Consider the standard pro-C trees S(G) and S(K) associated with
the free pro-C product decompositions

Gé:(Gl)éH"'H(Gm)é and K=K, II---1IK,,,

respectively.

Since K; is closed in G; (and thus in G) for each i, the canonical map of graphs
S(K) — S(K) is an embedding. We shall think of S(G) as being canonically embedded
in S(G;), of S(K) as being canonically embedded in S(K) and in S(G), and of S(K)
as being canonically embedded in S(Gs). Thus we have the following diagram of trees
(abstract and profinite):

S(K)— 5(G)

|

S(K)—— 5(G¢)

Remark that all the quotient graphs G;\S(G;s), K\S(K), G\S(G) and K\S(K) are iso-
morphic to the finite tree T,, introduced in Section 2; as we explained there, we shall
identify T, with its canonical transversal in S(K); in particular, vo = 1K, where Ky is
the trivial group.
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Since g € G, it can be written as a finite product of elements from Gy, ..., G,,; hence
the geodesic [vg, gvo] is finite, and therefore so is

h™ v, guo] = [ﬁ_lvo, lzrvo].

Let
D = U H[”UQ,TJ'U()],
jeJ
where {r; | j € J} is a finite set of generators for H; then D is the minimal H-invariant
subtree of S(G) containing vy. Consider the closure

D = U FI[UQ,T‘J'UQ]
jeJ

of D in S(Gy). Note that we have equal finite quotient graphs
H\D = H\D

by Lemma 3.8. Observe that D is a pro-C tree. It follows that

[ililvo, %Uo] Q D U S(K)

If h € K, then o

hke KNG =K,
since K is closed, and thus the result follows. Hence we may assume that h ¢ K. Now,
since [h~ vy, kvg] is finite, there exists a vertex

v € [h™ g, kue] N S(K)
such that [h~'wg,v'] is minimal. .
We claim that v/ € [h™1vg,v0]. Indeed, otherwise (since [h™1vg,v'] is finite) there
exists a vertex 3
w € [h g, V']

such that w € [h~ v, vo] but none of the edges of [w,v'] is in [~ vy, vo]. Then
[w, v N ([w, vo] U S(K))

is a finite tree (since the intersection is nonempty) consisting of the two vertices w and v’
but no edges, a contradiction. This proves the claim. In particular v’ € D. Therefore, one
has

[h Yo, 0] C [h™ g, vo] N [ Lo, k).

Clearly [v/, l%vo] is a finite path in S(K). Hence [l;_lv’, vo] is finite. On the other hand,

[k:flv’,vo] = I;:*l[vl,l;vo] - %*1[ﬁ*1v0,%v0] = [];—1]3—11)0700] = [gflvo,vo] C S(G),
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and so l;_lq’ € S(G)NS(K) = S(K) (see Corollary 3.12). Then, there exists k € K such
that kv; = k~ 10/, for some i = 0, ...,n. This means that v’ = kkv;. Now

hk € G if and only if hkk € G;

and » -
hk € HK if and only if hkk € HK.

Hence, replacing kk for k, we may assume that v’ = kv;, for some i = 0,...,n.
Denote by B o
¢v: D — H\D = H\D

the canonical morphism of graphs. Observe that
T=DnS(K)

is a pro-C subtree of S(Gs). We shall prove first that the quotient graph (H N K)\T is
finite. To see this consider the natural action of H N K on the space

T' = TN ((Gg)vo U E(S(Gg)).

We prove first that the set (H N K)\T’ has the same cardinality as ¢(7”), and so it is
finite. Indeed, note that ¢ induces a surjection of sets

o (HNE\T" — o(T").

Now, suppose ¢,t" € T" and xt = t' for some x € H; in particular ¢ and ¢’ are in the same
G g-orbit. Since t,t" € S(K), there exists k' € K such k't =t'. So,

et =t
Since t € T", its stabilizer is trivial. Therefore,
r=keHNK.
Thus, ¢ is a bijection. o
Since the edges of T" are in T”, it follows that (H N K)\T has only finitely many edges,
and so it is a finite graph. Let
p: T — (HNK)\T

be the canonical epimorphism of graphs. Then we have a commutative diagram

(HNEKN\T

[

— . A\D=H\D
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where the restriction of ¢ to (HNK)\T’ (and in particular, to the set of edges of (HNK)\T)
is an injection.

We claim that there exists a connected transversal ¥ of p containing vy such that
¥ C D C S(G). Clearly p(vo) lifts to vo € D. Let A be a maximal subgraph of p(7T) for
which there is a p-transversal > which is in D such that vy € ¥. Remark that

¥ C DNS(K) C S(G)NS(K) = S(K)

(the last equality follows from Corollary 3.12). If p(X) # p(T) then there exists a vertex
w of ¥ such that p(w) has an incident edge € € p(T') which is not in p(X). Let e be an
edge of T incident with w such that p(e) = e. Say w = yv; for some ¢ (0 < ¢ < m) and
some y € G. Since H\D = H\D (see Lemma 3.8), there is an edge ¢’ of D incident with w

such that ¢(e’) = €. Note that the stabilizer of w in S(G) is (Gz)g =y(Gi)sy~'. Hence,

since e, e’ € D, there exists h € H N (GZ)(yj with he = ¢/. If i = 0, then Go = 1; so h = 1;
therefore e = ¢’ is in T and in D. This would contradict the maximality of A. Thus we
may assume that 1 < ¢ < m. By Lemma 3.10 we have that H N (Gi)% =HNGY. Let v,

and v, be the vertices different from w of e and €', respectively. Then hve = ver. On the
other hand v, = kvg for some k € K and v, = y'vg for some 3y’ € G, since v, € S(K) and
ver € D C S(G). Therefore, hk = y/. By Lemma 3.11 hk = hk, for some h € H N GY,
k € K. It follows that

h™ e = ky' e = kv € S(K).

Since h~'w = w, we deduce that h=te’ € S(K) and h~'e¢ is incident with w; hence
h=le’ € DNS(K) C T. Since p(h~te') = &, we get a contradiction to the maximality of
A. This proves the claim.

As pointed out above, ¥ C S(K). Now, since v’ € DN S(K) = T, there exists some
o € HN K such that av’ € ; hence akv; € & C S(K). Therefore, akv; = zv;, for some
x € K. Since the stabilizer of v; in K is K;, we deduce that ak € KK;.

Write ak = kl%i, where k € K, k; € K;. Note that

hoatak = hk =g e G.
So, . R
(ha Ykk; =g € G.

It follows that B A
(k" (ha ™ Yk)k; =k 'g € G.

By Lemma 3.11 there exist h € H,k; € K; such that (k='hk)k; = k719 € G and so
h(kk;) = g, as required. O

19



REFERENCES
[1]. T. Coulbois, Free products, profinite topology and finitely generated subgroups, In-
ternat. J. Algebra Comput., 11 (2001) 171-184.

[2]. S.M. Gersten, Intersections of fininitely generated subgroups of free groups and reso-
lutions of graphs, Invent. Math., 71 (1983) 567-591.

[3]. D. Gildenhuys and L. Ribes, Profinite groups and Boolean graphs, J. Pure Appl.
Algebra, 12 (1978) 21-47.

[4]. K. Gruenberg, Residual properties of infinite soluble groups, Proc. London Math.
Soc., 7 (1957)29-62.

[5]. J-E. Pin, On a conjecture of Rhodes, Semigroup Forum, 39 (1989) 1-15.

[6]. J ~E. Pin and C. Reutenauer, A conjecture on the Hall topology for the free group,
Bull. London Math. Soc. 23 (1991) 356- 362 .

[7]. L. Ribes and P. Zalesskii, Profinite Groups, Springer, Berlin-New York, 2000.

[8]. L. Ribes and P. Zalesskii, On the profinite topology on a free group, Bull. London
Math. Soc., 25 (1993) 37-43.

[9]. L. Ribes and P. Zalesskii, The pro-p topology of a free group and algorithmic problems
in semigroups, Internat. J. Algebra Comput., 4 (1994) 359-374.

[10]. J-P. Serre, Trees, Springer, Berlin-New York, 1980
[11]. J.R. Stallings, Topology of finite graphs, Invent. Math., 71 (1983) 551-565.

[12]. S. You, The product separability of the generalized free product of cyclic groups, J.
London Math. Soc., (2) 56 (1996) 91-103.

School of Mathematics and Statistics
Carleton University
Ottawa, Ont., K1V 8N2, Canada

Iribes@math.carleton.ca

Departamento de Matematica
Universidade de Brasilia
Brasilia, Brazil

pz@mat.unb.br

20



